其实是在高二刚学的时候推的 拖到现在才搞成电子稿(

二项分布

设有二项分布

XB(n,p)X\sim \mathrm{B}(n,p)

则有期望

μ=k=0nP(X=k)k=k=0nCnkpk(1p)nkk=k=1nCn1k1pk1(1p)(n1)(k1)np=[p+(1p)]n1np=np\begin{aligned} \mu&=\sum_{k=0}^{n}{\mathrm{P}(X=k)k}\\ &=\sum_{k=0}^{n}{\mathrm{C}_n^k p^k (1-p)^{n-k} k}\\ &=\sum_{k=1}^{n}{\mathrm{C}_{n-1}^{k-1} p^{k-1} (1-p)^{(n-1)-(k-1)} np}\\ &=[p+(1-p)]^{n-1} np\\ &=np \end{aligned}

方差

σ2=k=0nP(X=k)(kμ)2=k=0nP(X=k)k22μk=0nP(X=k)k+μ2=k=0nP(X=k)k22μ2+μ2=k=0nCnkpk(1p)nkk2μ2=npk=1nCn1k1pk1(1p)(n1)(k1)kμ2=npk=1nCn1k1pk1(1p)(n1)(k1)[(k1)+1]μ2=npk=2nCn1k1pk1(1p)(n1)(k1)(k1)+k=1nCn1k1pk1(1p)(n1)(k1)μ2=n(n1)p2k=2nCn2k2pk2(1p)(n2)(k2)+k=1nCn1k1pk1(1p)(n1)(k1)μ2=n(n1)p2[p+(1p)]n2+[p+(1p)]n1μ2=n(n1)p2+1n2p2=np(1p)\begin{aligned} \sigma^2&=\sum_{k=0}^{n}{\mathrm{P}(X=k)(k-\mu)^2}\\ &=\sum_{k=0}^{n}{\mathrm{P}(X=k)k^2} - 2\mu\sum_{k=0}^{n}{\mathrm{P}(X=k)k} + \mu^2\\ &=\sum_{k=0}^{n}{\mathrm{P}(X=k)k^2} - 2\mu^2 + \mu^2\\ &=\sum_{k=0}^{n}{\mathrm{C}_n^k} p^k (1-p)^{n-k} k^2 - \mu^2\\ &=np\sum_{k=1}^{n}{\mathrm{C}_{n-1}^{k-1} p^{k-1} (1-p)^{(n-1)-(k-1)}k} - \mu^2\\ &=np\sum_{k=1}^{n}{\mathrm{C}_{n-1}^{k-1} p^{k-1} (1-p)^{(n-1)-(k-1)}[(k-1)+1]} - \mu^2\\ &=np\sum_{k=2}^{n}{\mathrm{C}_{n-1}^{k-1} p^{k-1} (1-p)^{(n-1)-(k-1)}(k-1)} + \sum_{k=1}^{n}{\mathrm{C}_{n-1}^{k-1}} p^{k-1} (1-p)^{(n-1)-(k-1)} - \mu^2\\ &=n(n-1)p^2\sum_{k=2}^{n}{\mathrm{C}_{n-2}^{k-2} p^{k-2} (1-p)^{(n-2)-(k-2)}} + \sum_{k=1}^{n}{\mathrm{C}_{n-1}^{k-1} p^{k-1} (1-p)^{(n-1)-(k-1)}} - \mu^2\\ &=n(n-1)p^2 [p+(1-p)]^{n-2} + [p+(1-p)]^{n-1} - \mu^2\\ &=n(n-1)p^2 + 1 - n^2 p^2\\ &=np(1-p) \end{aligned}

分层抽样

样本数量 nn,均值 μ\mu,方差 σ2\sigma^2
kk 层,第 ii 层样本数量为 nin_i,均值为 μi\mu_i,方差为 σi2\sigma_i^2
ii 层第 jj 个样本为 xijx_{ij}
则有方差

σ2=1ni=1kj=1ni(xijμ)2=1ni=1kj=1ni[(xijμi)+(μiμ)]2=1ni=1k[j=1ni(xijμi)2+2(μiμ)j=1ni(xijμi)+j=1ni(μiμ)2]=1ni=1k[niσi2+2(μiμ)(j=1nixijniμi)+ni(μiμ)2]=1ni=1k[niσi2+ni(μiμ)2]=1ni=1kni[σi2+(μiμ)2]\begin{aligned} \sigma^2&=\frac{1}{n}\sum_{i=1}^{k}{\sum_{j=1}^{n_i}{(x_{ij}-\mu)^2}}\\ &=\frac{1}{n}\sum_{i=1}^{k}{\sum_{j=1}^{n_i}{[(x_{ij}-\mu_i)+(\mu_i-\mu)]^2}}\\ &=\frac{1}{n}\sum_{i=1}^{k}{\left[\sum_{j=1}^{n_i}{(x_{ij}-\mu_i)^2} + 2(\mu_i-\mu)\sum_{j=1}^{n_i}{(x_{ij}-\mu_i)} + \sum_{j=1}^{n_i}{(\mu_i-\mu)^2}\right]}\\ &=\frac{1}{n}\sum_{i=1}^{k}{\left[n_i\sigma_i^2 + 2(\mu_i-\mu)\left(\sum_{j=1}^{n_i}{x_{ij}-n_i\mu_i}\right) + n_i(\mu_i-\mu)^2\right]}\\ &=\frac{1}{n}\sum_{i=1}^{k}{\left[n_i\sigma_i^2 + n_i(\mu_i-\mu)^2\right]}\\ &=\frac{1}{n}\sum_{i=1}^{k}{n_i\left[\sigma_i^2 + (\mu_i-\mu)^2\right]} \end{aligned}